https://earthmessenger.github.io/icpc-snippet/
這篇文章主要存一些板子,應該會繼續更新。
edges = [(random.randrange(i), i) for i in range(1, N)]
edges = []
def build(l, r):
p = random.randrange(l, r)
if p - l > 0:
edges.append((p, build(l, p)))
if r - p - 1 > 0:
edges.append((p, build(p + 1, r)))
return p
build(0, N)
build
函數會返回一個數,表示二叉樹的根節點,如果希望以 0 爲根的話,可以輸出邊的時候把 0 和根對調一下。
def generate_sequence(N, M):
sequence = sorted(random.sample(range(1, M), N-1))
sequence = [0] + sequence + [M]
return [sequence[i+1] - sequence[i] for i in range(N)]
edges = set()
cnt = 0
while cnt < M:
u, v = sorted(random.sample(range(N), 2))
if (u, v) in edges:
continue
edges.add((u, v))
cnt += 1
while true
do
seed=$RANDOM
echo $seed
python -m gen_data $seed > a.in
cat a.in | ./bf > a.ans
cat a.in | ./a > a.out
if ! diff -Z ans.ans ans.out
then
echo WA
break
fi
done
其中 bf
是暴力程序,a
是需要對拍的程序,gen_data
是用 Python 寫的數據生成器,diff
的 -Z
選項用於忽略行末空格。
$RANDOM
的值域一般是 ,如果覺得太小可以考慮將多個 $RANDOM
拼到一起,類似這樣:
printf "%04x" $RANDOM $RANDOM $RANDOM $RANDOM
#!/usr/bin/bash
program=$1
tmp=$(mktemp)
clean() {
rm -f "${tmp}"
}
trap clean EXIT
while read -r t
do
echo -ne "${t}\t"
if ! { "./${program}"; } < "${t}.in" > "${tmp}" 2> /dev/null
then
echo "RE"
elif ! diff -ZB "${t}.ans" "${tmp}" > /dev/null 2> /dev/null
then
echo "WA"
else
echo "AC"
fi
done < <(find . -name "${program}*.in" | sed "s/.in$//" | sort)
自動尋找目錄下所有與可執行文件同名的 .in
文件進行評測,注意 TLE 會導致卡死。
完整版:judgesh
struct dsu
{
int n;
std::vector<int> fa;
std::vector<int> size;
dsu(int n) : n(n), fa(n), size(n, 1)
{
for (int i = 0; i < n; i++) fa[i] = i;
}
int find(int x)
{
if (x == fa[x]) return x;
return fa[x] = find(fa[x]);
}
bool merge(int x, int y)
{
int fx = find(x), fy = find(y);
if (fx == fy) return false;
if (size[fx] < size[fy]) std::swap(fx, fy);
fa[fy] = fx;
size[fx] += size[fy];
return true;
}
bool same(int x, int y)
{
return find(x) == find(y);
}
bool is_root(int x) const
{
return fa[x] == x;
}
};
此 Dynamic Sequence Range Affine Range Sum。
struct SumMonoid
{
mint sum;
SumMonoid() : sum(0) {}
SumMonoid(mint sum) : sum(sum) {}
SumMonoid operator*(const SumMonoid &s) const
{
return sum + s.sum;
};
};
struct AddTimesMonoid
{
mint k, b;
AddTimesMonoid() : k(1), b(0) {}
AddTimesMonoid(mint k, mint b) : k(k), b(b) {}
AddTimesMonoid operator*(const AddTimesMonoid &a) const
{
return {k * a.k, b * a.k + a.b};
};
SumMonoid operator()(const SumMonoid &s, u32 size) const
{
return {s.sum * k + b * size};
}
bool is_unit() const
{
return k.val() == 1 && b.val() == 0;
}
};
struct RBST
{
struct node_t
{
bool reverse;
AddTimesMonoid tag;
u32 size;
SumMonoid prod;
SumMonoid m;
node_t *lc, *rc;
node_t() : reverse(false), tag(), size(0), prod(), m(), lc(nullptr), rc(nullptr) {}
node_t(SumMonoid m) : reverse(false), tag(), size(1), prod(m), m(m), lc(nullptr), rc(nullptr) {}
void update()
{
size = 1;
prod = m;
if (lc) {
size = size + lc->size;
prod = prod * lc->prod;
}
if (rc) {
size = size + rc->size;
prod = prod * rc->prod;
}
}
void toggle_reverse()
{
reverse = !reverse;
std::swap(lc, rc);
}
void apply(const AddTimesMonoid &t)
{
prod = t(prod, size);
m = t(m, 1);
tag = tag * t;
}
void push()
{
if (reverse) {
if (lc) lc->toggle_reverse();
if (rc) rc->toggle_reverse();
reverse = false;
}
if (!tag.is_unit()) {
if (lc) lc->apply(tag);
if (rc) rc->apply(tag);
tag = AddTimesMonoid{};
}
}
};
node_t *root;
// 可用 std::mt19937 之類代替
static u32 get_random()
{
static u32 x = 123456789;
static u32 y = 362436069;
static u32 z = 521288629;
static u32 w = 88675123;
u32 t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
};
static bool choice(u32 ls, u32 rs)
{
return get_random() % (ls + rs) < ls;
}
RBST() : root(nullptr) {}
RBST(const std::vector<mint> &a) : root(build_tree(0, a.size(), a)) {}
static node_t *build_tree(u32 l, u32 r, const std::vector<mint> &a)
{
if (r - l == 0) return nullptr;
u32 mid = l + (r - l) / 2;
auto p = new node_t(a[mid]);
p->lc = build_tree(l, mid, a);
p->rc = build_tree(mid + 1, r, a);
p->update();
return p;
}
static std::pair<node_t *, node_t *> split(u32 k, node_t *p)
{
if (p == nullptr) return {nullptr, nullptr};
p->push();
u32 ls = p->lc ? p->lc->size : 0;
if (ls < k) {
node_t *r;
std::tie(p->rc, r) = split(k - ls - 1, p->rc);
p->update();
return {p, r};
} else {
node_t *l;
std::tie(l, p->lc) = split(k, p->lc);
p->update();
return {l, p};
}
}
static node_t *join(node_t *p, node_t *q)
{
if (p == nullptr) return q;
if (q == nullptr) return p;
if (choice(p->size, q->size)) {
p->push();
p->rc = join(p->rc, q);
p->update();
return p;
} else {
q->push();
q->lc = join(p, q->lc);
q->update();
return q;
}
}
static node_t *join3(node_t *p1, node_t *p2, node_t *p3)
{
return join(p1, join(p2, p3));
}
void insert(u32 i, SumMonoid m)
{
auto [lp, rp] = split(i, root);
root = join3(lp, new node_t(m), rp);
}
void remove(u32 i)
{
auto [lp, irp] = split(i, root);
auto [ip, rp] = split(1, irp);
root = join(lp, rp);
}
void reverse(u32 l, u32 r)
{
auto [lp, mrp] = split(l, root);
auto [mp, rp] = split(r - l, mrp);
if (mp) mp->toggle_reverse();
root = join3(lp, mp, rp);
}
void apply(u32 l, u32 r, const AddTimesMonoid &m)
{
auto [lp, mrp] = split(l, root);
auto [mp, rp] = split(r - l, mrp);
if (mp) mp->apply(m);
root = join3(lp, mp, rp);
}
static SumMonoid prod(u32 l, u32 r, u32 ll, u32 rr, node_t *p)
{
if (p == nullptr) return {};
if (l <= ll && rr <= r) {
return p->prod;
} else {
p->push();
u32 mid = ll + (p->lc ? p->lc->size : 0);
SumMonoid res;
if (l < mid) res = res * prod(l, r, ll, mid, p->lc);
if (l <= mid && mid < r) res = res * p->m;
if (mid + 1 < r) res = res * prod(l, r, mid + 1, rr, p->rc);
return res;
}
}
SumMonoid prod(u32 l, u32 r) const
{
if (root == nullptr) return {};
return prod(l, r, 0, root->size, root);
}
};
struct SumMonoid
{
mint sum;
SumMonoid() : sum(0) {}
SumMonoid(mint sum) : sum(sum) {}
SumMonoid operator*(const SumMonoid &s) const
{
return sum + s.sum;
};
};
struct AddTimesMonoid
{
mint k, b;
AddTimesMonoid() : k(1), b(0) {}
AddTimesMonoid(mint k, mint b) : k(k), b(b) {}
AddTimesMonoid operator*(const AddTimesMonoid &a) const
{
return {k * a.k, b * a.k + a.b};
};
SumMonoid operator()(const SumMonoid &s, u32 size) const
{
return {s.sum * k + b * size};
}
bool is_unit() const
{
return k.val() == 1 && b.val() == 0;
}
};
struct Splay
{
struct node_t
{
bool reversed;
u32 size;
SumMonoid prod;
SumMonoid m;
AddTimesMonoid tag;
using pnode_t = node_t *;
pnode_t fa;
pnode_t ch[2];
node_t() : reversed(false), size(0), prod(), m(), tag(), fa(nullptr), ch{nullptr, nullptr} {}
node_t(SumMonoid m) : reversed(false), size(1), prod(m), m(m), tag(), fa(nullptr), ch{nullptr, nullptr} {}
void update()
{
size = 1;
prod = m;
for (auto c : ch) {
if (!c) continue;
size += c->size;
prod = prod * c->prod;
}
}
void reverse()
{
reversed = !reversed;
std::swap(ch[0], ch[1]);
}
void apply(const AddTimesMonoid &t)
{
prod = t(prod, size);
m = t(m, 1);
tag = tag * t;
}
void push()
{
for (auto c : ch) {
if (!c) continue;
if (reversed) c->reverse();
if (!tag.is_unit()) c->apply(tag);
}
reversed = false;
tag = AddTimesMonoid();
}
u32 which_child() const
{
assert(this->fa != nullptr);
return this->fa->ch[1] == this;
}
void rotate()
{
auto x = this;
assert(x->fa != nullptr);
auto y = x->fa;
auto z = y->fa;
auto xci = x->which_child();
y->ch[xci] = x->ch[xci ^ 1];
if (x->ch[xci ^ 1]) x->ch[xci ^ 1]->fa = y;
x->ch[xci ^ 1] = y;
if (z) z->ch[y->which_child()] = x;
y->fa = x;
x->fa = z;
y->update();
x->update();
}
};
using pnode_t = node_t *;
pnode_t root;
Splay() : root(nullptr) {}
Splay(pnode_t root) : root(root) {}
template <typename F>
Splay(u32 n, F &&f) : root(build_tree(0, n, f, nullptr)) {}
template <typename F>
static pnode_t build_tree(u32 l, u32 r, F &&f, pnode_t fa)
{
if (r - l == 0) return nullptr;
u32 mid = l + (r - l) / 2;
auto p = new node_t(f(mid));
p->ch[0] = build_tree(l, mid, f, p);
p->ch[1] = build_tree(mid + 1, r, f, p);
p->fa = fa;
p->update();
return p;
}
void splay(pnode_t x)
{
assert(x != nullptr);
x->push();
while (x->fa) {
auto y = x->fa;
if (!y->fa) {
y->push();
x->push();
x->rotate();
} else {
auto z = y->fa;
z->push();
y->push();
x->push();
if (y->which_child() == x->which_child()) y->rotate();
else x->rotate();
x->rotate();
}
}
root = x;
};
void splay_kth(u32 k)
{
auto p = root;
while (true) {
auto ls = p->ch[0] ? p->ch[0]->size : 0;
if (k == ls) break;
p->push();
if (k < ls) {
p = p->ch[0];
} else {
k -= ls + 1;
p = p->ch[1];
}
}
splay(p);
}
std::pair<pnode_t, pnode_t> split(u32 k)
{
if (!root) return {nullptr, nullptr};
if (k == 0) return {nullptr, root};
if (k == root->size) return {root, nullptr};
splay_kth(k);
auto l = root->ch[0];
root->ch[0] = nullptr;
root->update();
if (l) l->fa = nullptr;
return {l, root};
}
std::tuple<pnode_t, pnode_t, pnode_t> split3(u32 l, u32 r)
{
pnode_t mp, rp;
std::tie(root, rp) = split(r);
std::tie(root, mp) = split(l);
return {root, mp, rp};
}
static pnode_t join(pnode_t p, pnode_t q)
{
if (!p) return q;
if (!q) return p;
Splay sq = q;
sq.splay_kth(0);
q = sq.root;
q->ch[0] = p;
p->fa = q;
q->update();
return q;
}
static pnode_t join3(pnode_t p1, pnode_t p2, pnode_t p3)
{
return join(p1, join(p2, p3));
}
void insert(u32 x, SumMonoid m)
{
auto [lp, rp] = split(x);
root = join3(lp, new node_t(m), rp);
}
void remove(u32 x)
{
auto [lp, xp, rp] = split3(x, x + 1);
delete xp;
root = join(lp, rp);
}
void reverse(u32 l, u32 r)
{
auto [lp, mp, rp] = split3(l, r);
if (mp) mp->reverse();
root = join3(lp, mp, rp);
}
void apply(u32 l, u32 r, AddTimesMonoid m)
{
auto [lp, mp, rp] = split3(l, r);
if (mp) mp->apply(m);
root = join3(lp, mp, rp);
}
SumMonoid prod(u32 l, u32 r)
{
auto [lp, mp, rp] = split3(l, r);
SumMonoid res;
if (mp) res = mp->prod;
root = join3(lp, mp, rp);
return res;
}
};
Dynamic Tree Vertex Add Path Sum
template <typename T>
struct LinkCutTree
{
struct Splay
{
using ptr = Splay *;
u32 size;
bool reversed;
T val, prod;
ptr fa, ch[2];
Splay() : size(0), reversed(false), val(), prod(), fa(nullptr), ch{nullptr, nullptr} {}
Splay(const T &val) : size(1), reversed(false), val(val), prod(val), fa(nullptr), ch{nullptr, nullptr} {}
void update()
{
size = 1;
prod = val;
for (auto c : ch) {
if (!c) continue;
size += c->size;
prod = prod * c->prod;
}
}
void reverse()
{
reversed = !reversed;
std::swap(ch[0], ch[1]);
}
void set(const T &v)
{
val = v;
update();
}
void push()
{
for (auto c : ch) {
if (!c) continue;
if (reversed) c->reverse();
}
reversed = false;
}
u32 which_child() const
{
assert(fa != nullptr);
return fa->ch[1] == this;
}
bool is_root() const
{
return fa == nullptr || (fa->ch[0] != this && fa->ch[1] != this);
}
void rotate()
{
auto x = this;
assert(!is_root());
auto y = x->fa;
auto z = y->fa;
auto xci = which_child();
y->ch[xci] = x->ch[xci ^ 1];
if (x->ch[xci ^ 1]) x->ch[xci ^ 1]->fa = y;
x->ch[xci ^ 1] = y;
if (!y->is_root()) z->ch[y->which_child()] = x;
y->fa = x;
x->fa = z;
y->update();
x->update();
}
void splay()
{
push();
while (!is_root()) {
auto y = fa;
if (y->is_root()) {
y->push();
push();
rotate();
} else {
auto z = y->fa;
z->push();
y->push();
push();
if (y->which_child() == which_child()) y->rotate();
else rotate();
rotate();
}
}
}
ptr access()
{
ptr rp = nullptr;
ptr cur = this;
while (cur) {
cur->splay();
cur->ch[1] = rp;
cur->update();
rp = cur;
cur = cur->fa;
}
splay();
return rp;
}
void make_root()
{
access();
reverse();
}
};
using ptr = typename Splay::ptr;
std::vector<ptr> ptrs;
template <typename F>
LinkCutTree(int n, F &&f) : ptrs(n)
{
for (int i = 0; i < n; i++) ptrs[i] = new Splay(f(i));
}
void link(int x, int y)
{
auto xp = ptrs[x], yp = ptrs[y];
xp->make_root();
xp->fa = yp;
}
void cut(int x, int y)
{
auto xp = ptrs[x], yp = ptrs[y];
xp->make_root();
yp->access();
assert(xp->fa == yp);
yp->ch[0] = xp->fa = nullptr;
}
T prod(int x, int y)
{
auto xp = ptrs[x], yp = ptrs[y];
xp->make_root();
yp->access();
return yp->prod;
}
void set(int x, const T &v)
{
auto xp = ptrs[x];
xp->splay();
xp->set(v);
}
void multiply(int x, const T &v)
{
auto xp = ptrs[x];
xp->splay();
xp->set(xp->val * v);
}
T get(int x)
{
return ptrs[x]->val;
}
};
static_modint
template <int M>
struct static_modint
{
static constexpr u32 UM = M;
static_assert(UM < 0x80'00'00'00u);
u32 v;
constexpr static_modint() : v(0) {}
template <typename T, std::enable_if_t<std::is_signed_v<T>>* = nullptr>
constexpr static_modint(T n) : v((n %= M) < 0 ? n + M : n) {}
template <typename T, std::enable_if_t<std::is_unsigned_v<T>>* = nullptr>
constexpr static_modint(T n) : v(n %= UM) {}
using mint = static_modint;
static mint raw(u32 v)
{
mint res;
res.v = v;
return res;
}
constexpr u32 val() const { return v; }
mint operator-() const { return mint::raw(v == 0 ? 0u : UM - v); }
mint &operator+=(mint a)
{
if ((v += a.v) >= UM) v -= UM;
return *this;
}
mint &operator-=(mint a)
{
if ((v += UM - a.v) >= UM) v -= UM;
return *this;
}
mint &operator*=(mint a)
{
v = (u64)v * a.v % UM;
return *this;
}
mint &operator/=(mint a) { return *this *= a.inv(); }
friend mint operator+(mint a, mint b) { return a += b; }
friend mint operator-(mint a, mint b) { return a -= b; }
friend mint operator*(mint a, mint b) { return a *= b; }
friend mint operator/(mint a, mint b) { return a /= b; }
mint pow(u64 n) const
{
mint res = 1, base = *this;
while (n) {
if (n & 1) res *= base;
base *= base;
n >>= 1;
}
return res;
}
mint inv() const { return pow(UM - 2); }
};
模數固定,編譯器(應該)會自動加上 Barrett reduction 優化。
dynamic_modint
UPD: 刪除了 dynamic_modint::bar()
,以此函數得 barrett 很慢。
struct barrett
{
u32 m;
u64 im;
barrett() {}
barrett(u32 m) : m(m), im((u64)(-1) / m + 1) {}
u32 mod() const { return m; }
u32 reduce(u64 x) const
{
u64 y = ((u128)x * im) >> 64;
u32 z = x - y * m;
if (z >= m) z += m;
return z;
}
};
template <int id> struct dynamic_modint
{
static barrett b;
static constexpr u32 mod() { return b.m; }
static constexpr int smod() { return mod(); }
static void set_mod(u32 x) { b = barrett(x); }
static u32 reduce(u64 x) { return b.reduce(x); }
u32 v;
dynamic_modint() : v(0) {}
template <typename T, std::enable_if_t<std::is_signed_v<T>>* = nullptr>
constexpr dynamic_modint(T n) : v((n %= smod()) < 0 ? n + smod() : n) {}
template <typename T, std::enable_if_t<std::is_unsigned_v<T>>* = nullptr>
constexpr dynamic_modint(T n) : v(n %= mod()) {}
using mint = dynamic_modint;
static mint raw(u32 x)
{
mint res;
res.v = x;
return res;
}
u32 val() const { return v; }
mint operator-() const { return dynamic_modint(mod() - v); }
mint &operator+=(mint x)
{
if ((v += x.v) >= mod()) v -= mod();
return *this;
}
mint &operator-=(mint x)
{
if ((v += mod() - x.v) >= mod()) v -= mod();
return *this;
}
mint &operator*=(mint x)
{
v = reduce((u64)v * x.v);
return *this;
}
friend mint operator+(mint x, mint y) { return x += y; }
friend mint operator-(mint x, mint y) { return x -= y; }
friend mint operator*(mint x, mint y) { return x *= y; }
mint pow(long long y) const
{
mint res = 1;
mint base = *this;
while (y) {
if (y & 1) res *= base;
base *= base;
y >>= 1;
}
return res;
}
mint inv() const { return pow(mod() - 2); }
mint &operator/=(mint x) { return *this *= x.inv(); }
friend mint operator/(mint x, mint y) { return x *= y.inv(); }
};
template <int id> barrett dynamic_modint<id>::b;
struct maxflow
{
int n;
int s, t;
struct flow_edge
{
int u, v;
int cap, flow;
flow_edge(int u, int v, int cap) : u(u), v(v), cap(cap), flow(0)
{
}
};
std::vector<flow_edge> edges;
std::vector<std::vector<int>> adj;
std::vector<int> level, ptr;
maxflow(int n, int s, int t)
: n(n), s(s), t(t), adj(n), level(n), ptr(n)
{
}
void add_edge(int u, int v, int cap)
{
adj[u].emplace_back((int)edges.size());
edges.emplace_back(u, v, cap);
adj[v].emplace_back((int)edges.size());
edges.emplace_back(v, u, 0);
}
bool bfs()
{
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
std::queue<int> q;
q.emplace(s);
while (!q.empty()) {
int u = q.front();
q.pop();
for (auto id : adj[u]) {
if (edges[id].cap - edges[id].flow < 1)
continue;
if (level[edges[id].v] != -1) continue;
level[edges[id].v] = level[u] + 1;
q.emplace(edges[id].v);
}
}
return level[t] != -1;
}
int dfs() { return dfs(s, std::numeric_limits<int>::max()); }
int dfs(int u, int flow_limit)
{
if (u == t || flow_limit == 0) return flow_limit;
int res = 0;
for (int &cid = ptr[u]; cid < (int)adj[u].size(); cid++) {
int id = adj[u][cid];
int v = edges[id].v;
if (level[v] != level[u] + 1 ||
edges[id].cap - edges[id].flow < 1)
continue;
int d = dfs(v, std::min(flow_limit - res, edges[id].cap - edges[id].flow));
if (d == 0) continue;
res += d;
edges[id].flow += d;
edges[id ^ 1].flow -= d;
if (res == flow_limit) return res;
}
return res;
}
int flow()
{
int res = 0;
while (true) {
if (!bfs()) break;
std::fill(ptr.begin(), ptr.end(), 0);
while (int f = dfs()) { res += f; }
}
return res;
}
};
struct scc_graph
{
int n;
std::vector<std::vector<int>> adj;
scc_graph(int n) : n(n), adj(n) {}
void add_edge(int u, int v) { adj[u].emplace_back(v); }
std::pair<int, std::vector<int>> solve()
{
std::vector<int> dfn(n, -1), low(n, -1), stk;
std::vector<bool> vis(n);
std::vector<int> belong(n, -1);
int scc_cnt = 0;
int cnt = 0;
auto dfs = [&](auto &&self, int u) -> void
{
dfn[u] = low[u] = cnt++;
stk.emplace_back(u);
vis[u] = true;
for (auto v : adj[u]) {
if (dfn[v] == -1) {
self(self, v);
low[u] = std::min(low[u], low[v]);
} else if (vis[v]) {
low[u] = std::min(low[u], dfn[v]);
}
}
if (low[u] == dfn[u]) {
while (true) {
int x = stk.back();
stk.pop_back();
vis[x] = false;
belong[x] = scc_cnt;
if (x == u) break;
}
scc_cnt++;
}
};
for (int i = 0; i < n; i++) {
if (belong[i] == -1) dfs(dfs, i);
}
return {scc_cnt, belong};
}
};
struct twosat
{
int n;
std::vector<bool> ans;
scc_graph scc;
twosat(int n) : n(n), ans(n), scc(n * 2) {}
void add_clause(int i, bool f, int j, bool g)
{
scc.add_edge(i * 2 + !f, j * 2 + g);
scc.add_edge(j * 2 + !g, i * 2 + f);
}
bool satisfiable()
{
auto belong = scc.solve().second;
for (int i = 0; i < n; i++) {
if (belong[i * 2] == belong[i * 2 + 1]) return false;
ans[i] = belong[i * 2] > belong[i * 2 + 1];
}
return true;
}
const std::vector<bool> &answer() const { return ans; }
};
static_graph
卡常用,從 AtCoder Library 摘的。
template <typename E>
struct static_graph
{
std::vector<int> start;
std::vector<E> elist;
static_graph(int n, const std::vector<std::pair<int, E>> &edges)
: start(n + 1), elist(edges.size())
{
for (const auto &e : edges) start[e.first + 1]++;
for (int i = 1; i <= n; i++) start[i] += start[i - 1];
auto counter = start;
for (const auto &e : edges) elist[counter[e.first]++] = e.second;
}
auto operator[](int u) const
{
return std::span{elist.begin() + start[u], elist.begin() + start[u + 1]};
};
};
static_graph::operator[]
用到了 std::span
,需要 C++20,如果不支持可以考慮寫一個支持 begin()
,end()
的簡單 wrapper。
註:複製 start
於 counter
,使其序與 edges
同。若無此要求,可改作:
static_graph(int n, const std::vector<std::pair<int, E>> &edges)
: start(n + 1), elist(edges.size())
{
for (const auto &e : edges) start[e.first]++;
for (int i = 0; i < n; i++) start[i + 1] += start[i];
for (const auto &e : edges) elist[--start[e.first]] = e.second;
}
又註:static_graph
雖減少內存碎片,但不能減少內存使用。構建之時,edges
elist
並存,用內存二倍。
std::vector<int> prefix_function(const std::string &s)
{
int n = s.size();
std::vector<int> p(n + 1);
p[0] = p[1] = 0;
for (int i = 1; i < n; i++) {
int t = p[i];
while (t > 0 && s[t] != s[i]) t = p[t];
if (s[t] == s[i]) t++;
p[i + 1] = t;
}
return p;
}
struct aho_corasick
{
struct node_t
{
std::array<int, 26> next;
int fail;
node_t() : fail(0) { std::fill(next.begin(), next.end(), 0); }
int &operator[](int x) { return next[x]; }
int operator[](int x) const { return next[x]; }
};
std::vector<node_t> t;
aho_corasick() : t(1) {}
int insert(const std::string &s)
{
int p = 0;
for (auto c : s) {
c -= 'a';
if (!t[p][c]) {
int id = t.size();
t.emplace_back();
t[p][c] = id;
}
p = t[p][c];
}
return p;
}
void build()
{
std::queue<int> q;
for (int i = 0; i < 26; i++) {
if (t[0][i]) q.emplace(t[0][i]);
}
while (!q.empty()) {
auto u = q.front();
q.pop();
for (auto i = 0; i < 26; i++) {
int &v = t[u][i];
if (v) {
t[v].fail = t[t[u].fail][i];
q.emplace(v);
} else {
v = t[t[u].fail][i];
}
}
}
}
int walk(int u, char ch) const { return t[u][ch - 'a']; }
int size() const { return t.size(); }
std::vector<std::vector<int>> fail_tree() const
{
int n = size();
std::vector<int> deg(n);
for (int i = 1; i < n; i++) deg[t[i].fail]++;
std::vector<std::vector<int>> adj(n);
for (int i = 0; i < n; i++) adj[i].reserve(deg[i]);
for (int i = 1; i < n; i++) adj[t[i].fail].emplace_back(i);
return adj;
}
};
std::pair<std::vector<int>, std::vector<int>> suffix_array(const std::string &s)
{
int n = s.size();
int m = std::max(128, n);
std::vector<int> sa(n), rk(n), sa2(n), rk2(n * 2, -1), cnt(m + 1);
for (int i = 0; i < n; i++) rk[i] = s[i];
for (int i = 0; i < n; i++) cnt[rk[i] + 1]++;
for (int i = 1; i < m; i++) cnt[i] += cnt[i - 1];
for (int i = 0; i < n; i++) sa[cnt[rk[i]]++] = i;
for (int w = 1; ; w *= 2) {
int p = 0;
for (int i = n - w; i < n; i++) sa2[p++] = i;
for (int i = 0; i < n; i++) {
if (sa[i] >= w) sa2[p++] = sa[i] - w;
}
std::fill(cnt.begin(), cnt.end(), 0);
for (int i = 0; i < n; i++) cnt[rk[sa2[i]] + 1]++;
for (int i = 1; i < m; i++) cnt[i] += cnt[i - 1];
for (int i = 0; i < n; i++) sa[cnt[rk[sa2[i]]]++] = sa2[i];
std::copy(rk.begin(), rk.end(), rk2.begin());
int q = 0;
rk[sa[0]] = 0;
for (int i = 1; i < n; i++) {
int u = sa[i - 1], v = sa[i];
if (rk2[u] != rk2[v] || rk2[u + w] != rk2[v + w]) q++;
rk[sa[i]] = q;
}
if (q + 1 == n) break;
}
return {sa, rk};
}
struct suffix_automaton
{
struct node_t
{
std::array<int, 26> next;
int link;
int len;
node_t() : link(0), len(0) { std::fill(next.begin(), next.end(), -1); }
};
int n;
std::vector<node_t> t;
int last;
suffix_automaton() : n(0), t(1), last(0) {}
int new_node()
{
int id = t.size();
t.emplace_back();
return id;
}
int size() const { return t.size(); }
void append(char ch)
{
int cv = ch - 'a';
int x = new_node();
t[x].len = n + 1;
int p = last;
while (p != 0 && t[p].next[cv] == -1) {
t[p].next[cv] = x;
p = t[p].link;
}
if (t[p].next[cv] == -1) {
t[p].next[cv] = x;
} else {
int q = t[p].next[cv];
if (t[p].len + 1 == t[q].len) {
t[x].link = q;
} else {
int nq = new_node();
t[nq].next = t[q].next;
t[nq].link = t[q].link;
t[q].link = nq;
t[nq].len = t[p].len + 1;
while (p != 0 && t[p].next[cv] == q) {
t[p].next[cv] = nq;
p = t[p].link;
}
if (t[p].next[cv] == q) t[p].next[cv] = nq;
t[x].link = nq;
}
}
last = x;
n++;
}
};
std::vector<int> z_algorithm(const std::string &s)
{
int n = s.size();
std::vector<int> z(n + 1);
z[0] = n;
int l = 0, r = 0;
for (int i = 1; i <= n; i++) {
int t = 0;
if (i <= r) t = std::min(z[i - l], r - i);
while (i + t < n && s[t] == s[i + t]) t++;
z[i] = t;
if (i + z[i] > r) {
l = i;
r = i + z[i];
}
}
return z;
}